Package: powerly 1.8.6

powerly: Sample Size Analysis for Psychological Networks and More

An implementation of the sample size computation method for network models proposed by Constantin et al. (2021) <doi:10.31234/osf.io/j5v7u>. The implementation takes the form of a three-step recursive algorithm designed to find an optimal sample size given a model specification and a performance measure of interest. It starts with a Monte Carlo simulation step for computing the performance measure and a statistic at various sample sizes selected from an initial sample size range. It continues with a monotone curve-fitting step for interpolating the statistic across the entire sample size range. The final step employs stratified bootstrapping to quantify the uncertainty around the fitted curve.

Authors:Mihai Constantin [aut, cre]

powerly_1.8.6.tar.gz
powerly_1.8.6.zip(r-4.5)powerly_1.8.6.zip(r-4.4)powerly_1.8.6.zip(r-4.3)
powerly_1.8.6.tgz(r-4.5-any)powerly_1.8.6.tgz(r-4.4-any)powerly_1.8.6.tgz(r-4.3-any)
powerly_1.8.6.tar.gz(r-4.5-noble)powerly_1.8.6.tar.gz(r-4.4-noble)
powerly_1.8.6.tgz(r-4.4-emscripten)powerly_1.8.6.tgz(r-4.3-emscripten)
powerly.pdf |powerly.html
powerly/json (API)
NEWS

# Install 'powerly' in R:
install.packages('powerly', repos = c('https://mihaiconstantin.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mihaiconstantin/powerly/issues

On CRAN:

Conda:

network-modelspower-analysispsychologysample-size-calculation

3.65 score 9 stars 3 scripts 213 downloads 3 exports 156 dependencies

Last updated 2 years agofrom:13d86e13df. Checks:6 OK, 3 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKApr 01 2025
R-4.5-winNOTEApr 01 2025
R-4.5-macNOTEApr 01 2025
R-4.5-linuxNOTEApr 01 2025
R-4.4-winOKApr 01 2025
R-4.4-macOKApr 01 2025
R-4.4-linuxOKApr 01 2025
R-4.3-winOKApr 01 2025
R-4.3-macOKApr 01 2025

Exports:generate_modelpowerlyvalidate

Dependencies:abindbackportsbase64encbitbit64bootbootnetbroombslibcachemcheckmateclassclicliprclustercocorcodetoolscolorspacecorpcorcorrplotcpp11crayondata.tabledigestdoParalleldplyre1071eigenmodelellipseevaluatefansifarverfastmapfdrtoolfontawesomeforcatsforeachforeignFormulafsgdatagenericsggplot2glassoglmnetglueGPArotationgridExtragtablegtoolshavenhighrHmischmshtmlTablehtmltoolshtmlwidgetsigraphIsingFitIsingSamplerisobanditeratorsjomojpegjquerylibjsonliteknitrlabelinglatticelavaanlifecyclelme4magrittrMASSMatrixmemoisemgcvmgmmicemimeminqamitmlmnormtmunsellmvtnormNetworkToolboxnetworktoolsnlmenloptrnnetnnlsnumDerivordinalpanpatchworkpbapplypbivnormpillarpkgconfigplotrixplyrpngpolynomppcorprettyunitsprogressproxypsychpurrrpwrqgraphquadprogR.matlabR.methodsS3R.ooR.utilsR6rappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackreadrreformulasreshape2rlangrmarkdownrpartrstudioapisassscalesshapesmacofsnowsplines2stringistringrsurvivaltibbletidyrtidyselecttinytextzdbucminfutf8vctrsviridisviridisLitevroomweightswithrwordcloudxfunyaml